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ABSTRACT 
In this paper, the S-expression Interpreter Framework (SIF) is 
presented as a tool for teaching language design and 
implementation. The SIF is based on the interpreter design pattern 
and is written in the Ruby programming language. Its core is quite 
small, but it can be easily extended by adding primitive 
procedures and special forms. The SIF can be used to demonstrate 
advanced language concepts (variable scopes, continuations, etc.) 
as well as different programming styles (functional, imperative, 
and object oriented). 

Categories and Subject Descriptors 
D.3.4 [Programming Languages]: Processors − interpreters, 
run-time environments. 

General Terms 
Design, Languages. 

Keywords 
Interpreter, Ruby, S-expression, Design Patterns. 

1. INTRODUCTION 
Teaching programming language design concepts through the 
construction of interpreters has been an appealing approach used 
by others in the past [3][6]. Following this same direction, the 
author developed the S-expression Interpreter Framework (SIF). 
This framework has been effectively used as a teaching aid at the 
undergraduate Programming Languages course at the Tecnológico 
de Monterrey, Campus Estado de México. The framework is 
written in Ruby in order to have students learn an increasingly 
popular object-oriented dynamic language, while learning 
language design and implementations concepts at the same time.  
The following subsections deal with some issues that are required 
in order to understand the design and inner workings of the SIF. 
The larger part of this paper, sections 2 and 3, is basically a 
tutorial on how to use and extend the framework so as to be able 
 

to explore different language concepts and programming styles.  
Section 4 describes briefly how the SIF has been used in class. 
The conclusions are found in section 5. 

1.1 S-Expressions 
S-expressions (symbolic expressions) are a parenthesized prefix 
notation, mainly used in the Lisp family languages. They were 
selected as the framework’s source language notation because 
they offer important advantages:  

•  Both code and data can be easily represented. Adding a new 
language construct is pretty straightforward. 

•  The number of program elements is minimal, thus a parser is 
relatively easy to write. 

•  The arity of operators doesn’t need to be fixed, so, for 
example, the + operator can be defined to accept any number 
of arguments. 

•  There are no problems regarding operator precedence or 
associativity, because every operator has its own pair of 
parentheses. 

It’s definitely easier to build an S-expression interpreter using an 
S-expression language like Common Lisp or Scheme. Indeed, 
plenty examples have been documented previously [1][2][5]. In 
most of these cases, a “meta-circular” approach is used, meaning 
that the existing facilities of the implementation language are 
directly applied to the source code being interpreted. Although 
this approach is very interesting as a way of demonstrating the 
power and expressiveness of the implementation language, the 
author has witnessed that some students get the impression that 
we are actually “cheating”. This is because a lot of the source 
language features are typically mapped directly to the same 
features in the implementation language. The SIF, having Ruby as 
its implementation language, skips this common circular 
perception peril. Ruby offers the power and flexibility of a 
dynamic language, yet maintains a healthy distance from the 
source language being interpreted. 

1.2 The Interpreter Pattern 
The interpreter pattern is one of the classical Gang of Four (GoF) 
behavioral patterns [4]. A program is portrayed as a tree in which 
every construct or element in the source program is represented by 
a specific kind of node. Every node responds to a special 
operation called interpret, which is responsible for performing the 
expected behavior associated with the corresponding language 
element. The interpret operation receives a context as a parameter, 
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which is basically a symbol table where variable bindings can be 
established and queried during runtime.  
The framework’s job begins by reading a source program 
represented as a string. The Ruby regular expression API is used 
to scan the input, and a hand written recursive descent parser 
performs the syntactic analysis that transforms the S-expressions 
into the equivalent Ruby data values. These objects are then 
traversed in order to construct the tree required by the interpreter 
pattern. 

1.3 The Ruby Language 
Ruby is an interpreted, dynamically typed programming language. 
Its syntax borrows from Eiffel, Ada, and Perl, and it’s fully 
object-oriented in the spirit of Smalltalk [7]. Several language 
features in Ruby simplify the construction of language 
interpreters, including: 

•  Built-in regular expressions, required to build a lexical 
analyzer or scanner.  

•  Garbage collection, which allows the interpreted languages 
to also benefit from automatic memory management. 

•  Built-in hashes can be used as symbol tables, while primitive 
symbol data values can be used as efficient hash keys. 

•  Open classes, which simplify using predefined Ruby classes 
to represent the interpreter’s basic data types, since new 
methods can always be added to these classes if needed.  

•  First class continuations, which permit the implementation of 
special control-flow instructions such as arbitrary loop 
breaks and exception handlers. 

The following subsubsections briefly describe a few Ruby 
language issues necessary to understand the code found in other 
sections of this paper. 

1.3.1 Data Types 
Everything in Ruby is an object, including: strings, numbers, 
arrays (lists), hashes (maps or dictionaries), symbols, procedures 
(closures), and even classes. Some examples (the # character 
denotes the start of a line comment): 

'Hello Portland!' # A string
42 # A number
[1, [], 'A'] # An array
{ 'foo' => 5, 'bar' => 10 } # A hash
:foo # A symbol
Proc.new {|x, y| 2*(x+y)} # A procedure
class MyClass; end # A class

1.3.2 Naming Conventions 
Local variables, method parameters, and method names should all 
start with a lowercase letter or with an underscore. Global 
variables are prefixed with a dollar sign ($), while instance 
variables begin with an “at” sign (@). Class variables start with 
two “at'” signs (@@). Finally, class names, module names, and 
constants should start with an uppercase letter [8]. 

1.3.3 Code Blocks 
A code block is a “chunk” of code that can be associated with a 
method invocation, almost as if it was a parameter. That method 
can then invoke the block one or more times using Ruby’s yield 
statement. The return value of a block is the result of its last 
expression. Code blocks are a very important and powerful feature 
of the Ruby language, and they are usually used to implement 

things like callbacks and iterators. The SIF implementation uses 
code blocks extensively. 
Code blocks are enclosed within curly braces (or by the do and 
end reserved words), and they may include a comma-separated 
formal parameter list delimited by vertical bars (see the procedure 
object example in section 1.3.1). Although the code block would 
seem like an extra parameter, it’s better to think of it as a 
coroutine that transfers control back and forth between itself and 
the method [8]. 

2. USING THE FRAMEWORK 
The following subsections explain the basic usage of the SIF and 
demonstrate how to extend it.  

2.1 Evaluation Rules 
The core of the SIF is very simple. It only supports integers, 
symbols, lists, and procedures. These are evaluated as follows: 

•  A number evaluates to itself. 
•  A symbol is considered to be a variable reference, so it 

evaluates to the value that it’s bound to. If the variable is 
unbound, a runtime error is raised. 

•  An empty list evaluates to itself. 
•  A non-empty list is considered a procedure application. The 

first element of the list must evaluate to a “callable” object. 
An object is callable if it contains a method named call 
(this is true also for standard Ruby Proc objects). A runtime 
error is raised if no callable object is found at the beginning 
of the list. The remainder of the list elements are evaluated 
and sent as arguments to the procedure being called. A 
runtime error is also raised if the number of actual and 
formal parameters doesn’t match.  

Non-empty lists may also be special forms with particular 
evaluation rules, but they must be explicitly defined. Section 2.4 
explains how to do this. Additionally, there are no explicit 
boolean values. The SIF’s convention is that an empty list is 
considered to be false, anything else is considered true. 

2.2 Simple Usage 
The Interpreter.eval class method is the heart of the SIF. 
This method receives a string and a context as inputs. The string 
should contain one or more valid S-expressions, while the context 
may be a hash object in which each key represents the name of a 
variable that’s associated with some specific value. The hash keys 
are assumed to be Ruby Symbols, and the hash itself should be 
mutable in order to allow the S-expressions to modify its contents 
if needed. This method parses the input string converting the S-
expressions into their equivalent Ruby data values, and then 
proceeds with the evaluation using the interpreter pattern as 
described in section 1.2. 
The following example shows how to use the SIF in its simplest 
form: 

require 'sif'

my_context = {:foo => 5, :bar => 10}
result = Interpreter.eval('foo', my_context)
puts result.to_sexp

The first instruction loads the required framework code. The last 
instruction prints the result of the evaluation using the to_sexp 
method to obtain its S-expression textual representation. This 
example prints 5, because the expression to evaluate is only a 



reference to variable foo, which is associated to the value 5 in the 
given context. Writing a simple REPL (Read-Eval-Print Loop) for 
the SIF is a pretty straightforward chore. 

2.3 Defining Primitive Procedures 
A procedure is considered to be “primitive” if it’s written in 
Ruby. Continuing from the last example, the following code 
creates a primitive procedure and binds it to a variable in our 
previously defined context: 

my_context[:max] = Proc.new do |args, ctx|
(args[0] > args[1]) ? args[0] : args[1]

end

Primitive procedures for the SIF are usually defined as Ruby 
Proc objects. They receive two inputs: an array args, which 
contains the actual parameters sent to the procedure, and the 
current context ctx, which may be safely ignored most of the time 
(the current context in normally useful only when defining 
procedures like Lisp’s eval or apply). The above code binds 
into my_context the variable max with a procedure that returns 
the larger of its two arguments (assuming they’re comparable 
through the > operator). The ? ternary operator used here works 
the same as in other C-family languages. The newly defined 
procedure can now be used as follows:  

a_string = '(max (max foo bar) 7)'
result = Interpreter.eval(a_string, my_context)
puts result.to_sexp

This code prints 10. 
The SIF provides a class called Primitives which provides a set 
of predefined primitive procedures (including operations for 
arithmetic, list processing, and type predicates) that can be readily 
used. The class method Primitives.context should be used to 
get a copy of the context containing the variable bindings to the 
primitive procedures. New variables bindings can be added 
afterwards, for example: 

my_context = Primitives.context
my_context[:baz] = 20

New primitive procedures can be added to the Primitives class 
using the Primitives.include class method. The following 
code shows a possible implementation of an equality primitive 
procedure, including its input validation, and the way to integrate 
it into the Primitives class: 

Primitives.include('equal?') do |args, ctx|
if args.length != 2
raise InterpreterError.new(
'equal? expects two arguments!')

else
args[0] == args[1] ? :t : []

end
end

The parameter received by the include method may be a string 
or a symbol. The associated code block gets converted to a Proc 
object and gets stored in a private hash contained within the 
Primitives class. Ruby’s true and false values are not 
supported by the language being interpreted, so equivalent values 
should be explicitly returned (the symbol :t and the empty list 
[], respectively). 

2.4 Defining Special Forms 
The SIF uses strict evaluation when calling a procedure. This 
means that all the arguments of a procedure are completely 
evaluated before being called. Sometimes a different behavior 

from the one described is required. If that’s the case, a new special 
form can be defined.  
Defining a special form requires creating a new class with the 
following characteristics: 

••••  It must be a subclass of the Node class. Instances of this 
class will be used as nodes for the interpreter pattern tree. 

••••  It must include a special_form statement to indicate the 
name that this special form will have when used as an S-
expression. The name must be specified as a string, and it 
must be a valid S-expression symbol name. 

••••  It must define an initialize method (similar to a 
constructor in other languages) receiving one array 
parameter that contains all the arguments (as Ruby data 
values) to this special form. This method has two purposes: 

1. Validate the correct syntax for this special form. 
2. Construct the subtrees for this special form by calling 

the Node.build class method. The resulting child 
nodes should be stored in instance variables. This step 
converts Ruby core data into the corresponding 
interpreter pattern tree. 

••••  It must define the interpret method, which receives a 
context as a parameter. This is the central method in the 
interpreter pattern. Usually, the interpret method is 
called recursively for some or all of its child nodes, 
according to the semantics of this special form, which also 
establishes what the return value should be. 

The previous description can be summarized as follows:  
For any special form being defined, identify its syntax and 
semantics. The syntax must be checked in the initialize 
method, while the semantics must be implemented in the 
interpret method. 

For example, suppose we want to implement the if special form. 
Its syntax and semantics are as follows: 

Syntax:  (if 〈condition〉 〈consequent〉 〈alternative〉)  

Semantics:  Evaluate 〈condition〉, if the resulting value is not 
an empty list, evaluate and return 〈consequent〉, 
otherwise evaluate and return 〈alternative〉. 

The following code takes into account all the stated requirements. 
This is the complete implementation of the IfNode: 

class IfNode < Node
special_form 'if'
def initialize(args)
if args.length == 3
@condition = Node.build(args[0])
@consequent = Node.build(args[1])
@alternative = Node.build(args[2])

else
raise InterpreterError.new(
'if takes three arguments!')

end
end
def interpret(context)
if @condition.interpret(context) != []
return @consequent.interpret(context)

else
return @alternative.interpret(context)

end
end

end



No other part of the SIF has to be modified in order to extend it 
with this special form. The trick is done through the 
special_form statement, which adds a reference to this class 
into an internal table that is later used by the Node.build class 
method to create IfNode instances whenever the if symbol is 
found after an opening parenthesis.  
The SIF is now able to evaluate an S-expression like this one: 

(if (< (* 3 3) (+ 3 3)) (* 3 3) (+ 3 3)) ⇒⇒⇒⇒ 6

In the previous IfNode class definition, the if special form was 
implemented using Ruby’s if statement. Most of the time, this 
mapping from S-expressions to Ruby is not as straightforward as 
observed here, and that’s when things start to get interesting. 

3. ADVANCED LANGUAGE ISSUES 
The SIF can be extended in several interesting ways. The next 
subsections document some possibilities that the author has 
explored together with his students. 

3.1 Functional Programming 
A small pure functional language interpreter can be built with the 
SIF core infrastructure plus the following special forms: quote, 
define, if and fn. These special forms behave mostly like their 
Scheme programming language counterparts [2]. Some examples:  

(define composite
(fn (f g)
(fn (x) (f (g x)))))

(define f1 (fn (x) (+ x 3)))
(define f2 (fn (x) (* x 2)))
(define f3 (composite f1 f2))
(define f4 (composite f2 f1))
(f3 1) ⇒⇒⇒⇒ 5
(f4 1) ⇒⇒⇒⇒ 8
(define map
(fn (proc lst)
(if (null? lst) ()

(cons (proc (first lst))
(map proc (rest lst))))))

(map f2 (quote (4 -3 10 5))) ⇒⇒⇒⇒ (8 -6 20 10) 

The fn special form is used for creating procedures. Here’s its 
implementation: 

class FnNode < Node
special_form 'fn'
def initialize(args)
# Validation code omitted
@params = args[0]
@body = Node.build(args[1])

end
def interpret(context)
return StaticScopeProcedure.new(
context, @params, @body)

end
end

class StaticScopeProcedure
def initialize(context, params, body)
@context = context
@params = params
@body = body

end
def call(args, ctx)
return @body.interpret(
extend_context(@params, args, @context))

end
end 

The StaticScopeProcedure object returned by the interpret 
method of FnNode class allows having lexical closures. Instances 
of this class are callable (contain a call method), meaning that 
they can be used as the first element of a procedure application 
list. The extend_context method invoked inside the call 
method is responsible for creating a shallow copy of the stored 
context (@context) and adding to this copy the corresponding 
bindings between the formal (@params) and actual (args) 
parameters. This extended context is then used to evaluate the 
procedure’s body (@body). Note that the context being cloned is 
the one available when the procedure was created and not when it 
was actually called. This subtle detail is the difference between 
static and dynamic scoping. 
It’s worth pointing out a couple of important issues with this 
implementation. Firstly, self and mutual recursions are supported 
thanks to the ways in which the contexts are used and cloned. 
Secondly, when a procedure gets called, Ruby’s ordinary 
invocation mechanism is used. This means that there is no support 
for tail-recursion optimization, as it might be expected from a 
functional language. This could be considered a major 
shortcoming of the current SIF implementation. 

3.2 Imperative Programming 
The SIF allows imperative programming by adding two special 
forms: set! (assign a new value to a previously defined variable, 
and return nil) and begin (evaluate a sequence of expressions 
from left to right, and return the result of the last expression). A 
new class, called Environment, also needs to be defined. This 
class is used to represent contexts for imperative programs. Its 
interface is similar to a hash, but internally it uses a list of frames. 
Individual frames, which also happen to be hashes, represent a 
scoping level. Frames are shared within the environments of 
nested procedures, allowing every variable definition and 
assignment to occur inside the expected frame.  
Special environment objects were not required in assignmentless 
programs because whenever a procedure was called, the hash used 
as the context was merely copied. Any new parameter whose 
name already existed in the hash copy was simply overwritten 
with a new value. Because the values in a context were never 
required to be updated (because there is no assignment), there 
could be multiple copies of the same variables in different hashes 
without this being a problem. 

3.3 Using Continuations 
Unlike many other languages, Ruby supports first class 
continuations. These can be used together with the SIF to 
implement special flow control structures such as exceptions or 
loop breaks. The following code illustrates how to use 
continuations to implement a break inside a while. This code 
uses the callcc method to capture the current continuation. 
Assuming that the code is running in a single execution thread, we 
can use a global stack in order to allow multiple nested while 
statements. The continuation is sent as a parameter to the 
associated block and is pushed into the stack referred by a class 
variable. When the break procedure is called, the continuation at 
the top of the stack is called. This causes the program execution 
flow to safely jump to the end of the corresponding callcc 
instruction, effectively ending the most nested while loop. When 
the while terminates (normally or through a break instruction) 
the continuation at the top of the stack is popped. 



class WhileNode < Node
special_form 'while'
@@stack = []
def initialize(args)
# syntax validation code omitted
@condition = Node.build(args[0])
@body = Node.build(args[1])

end
def interpret(context)
callcc do |continuation|
@@stack.push(continuation)
while @condition.interpret(context) != []
@body.interpret(context)

end
end
@@stack.pop
return nil

end
def WhileNode.do_break
@@stack.last.call if !@@stack.empty

end
end

Primitives.include('break') do |args, ctx|
WhileNode.do_break

end

This is how the while and break statements could be used: 
(define i 1)
(define r 1)
(while (< i 11) (begin (set! r (* r i))

(if (= i 5) (break) ())
(set! i (+ i 1))))

r ⇒⇒⇒⇒ 120
i ⇒⇒⇒⇒ 5

4. CLASS EXPERIENCE 
The author has used the S-expression Interpreter Framework in 
his Programming Language course several times since mid 2005. 
This course is mandatory for third year computer science 
undergraduate majors. Before taking the course, all students have 
had a fair amount of experience designing and programming in 
Java and C/C++. They’ve already taken courses on data structures 
and theory of computation, so they’re familiar with stacks, 
queues, hash tables, regular expressions and context free 
grammars.  
The course is taught during a sixteen week semester. It’s mainly 
focused on teaching programming paradigms and language design 
issues. The SIF is presented to students during the last four weeks. 
At this point, they’ve been exposed already to Scheme and Ruby, 
so it’s possible to thoroughly deal with the framework’s inner 
workings. As extra-class activities, students are required to extend 
the SIF in order to implement some of the following features:  

•  Operations that deal directly with the primitive data types, 
for example arithmetic and type conversion operations. 

•  New syntactic elements based on others previously defined 
(syntactic sugar). This basically means using special forms as 
a procedural macro facility. 

•  Lazy (delayed) evaluation support, like short-circuit logical 
operations (C’s && and ||) or infinite streams (Scheme’s 
delay and force). 

•  Local variables with dynamic scope, as available in Common 
Lisp or Perl. 

•  Flow control statements, including conventional loops (C or 
Pascal), pattern matching (Haskell or Erlang), exception 

handlers (C++ or Java), coroutines (Modula-2), and iterators 
(Python). 

•  A simple object-oriented system, combining lexical closures 
and some syntactic sugar, as can be accomplished in Scheme 
[2]. 

The neat thing about the SIF is that all the exercises in the 
previous list can be solely accomplished by applying the 
techniques demonstrated in sections 2.3 and 2.4. 
Once the course has concluded, most students demonstrate 
through formal assessment that they are able to: 

•  Extend the SIF by writing their own primitive procedures 
and special forms using Ruby and object-oriented design 
principles and techniques. 

•  Read and write S-expression source programs that use a 
certain programming style or apply a specific language 
concept. 

Informal interviews with students at the end of the semester 
suggest that, in general, they enjoyed the SIF approach and that it 
helped them to have a better understanding of how programming 
languages work. 

5. CONCLUSIONS 
The S-expression Interpreter Framework (SIF) provides the basic 
building blocks that allow writing interpreters that can easily be 
studied, extended and modified. Particularly useful is the SIF’s 
special form definition mechanism, which allows a clear 
distinction between the syntax and semantics of any language 
construct. The author has used the SIF in his Programming 
Languages course for several semesters now with positive results. 
The full source code for the SIF is freely available for anyone to 
use and modify under the GNU General Public License at the 
following Web site: http://sif.arielortiz.com/ 
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