
Language Design and Implementation using Ruby
and the Interpreter Pattern

Ariel Ortiz
Information Technology Department

Tecnológico de Monterrey, Campus Estado de México
Atizapán de Zaragoza, Estado de México, Mexico. 52926

ariel.ortiz@itesm.mx

ABSTRACT
In this paper, the S-expression Interpreter Framework (SIF) is
presented as a tool for teaching language design and
implementation. The SIF is based on the interpreter design pattern
and is written in the Ruby programming language. Its core is quite
small, but it can be easily extended by adding primitive
procedures and special forms. The SIF can be used to demonstrate
advanced language concepts (variable scopes, continuations, etc.)
as well as different programming styles (functional, imperative,
and object oriented).

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors − interpreters,
run-time environments.

General Terms
Design, Languages.

Keywords
Interpreter, Ruby, S-expression, Design Patterns.

1. INTRODUCTION
Teaching programming language design concepts through the
construction of interpreters has been an appealing approach used
by others in the past [3][6]. Following this same direction, the
author developed the S-expression Interpreter Framework (SIF).
This framework has been effectively used as a teaching aid at the
undergraduate Programming Languages course at the Tecnológico
de Monterrey, Campus Estado de México. The framework is
written in Ruby in order to have students learn an increasingly
popular object-oriented dynamic language, while learning
language design and implementations concepts at the same time.
The following subsections deal with some issues that are required
in order to understand the design and inner workings of the SIF.
The larger part of this paper, sections 2 and 3, is basically a
tutorial on how to use and extend the framework so as to be able

to explore different language concepts and programming styles.
Section 4 describes briefly how the SIF has been used in class.
The conclusions are found in section 5.

1.1 S-Expressions
S-expressions (symbolic expressions) are a parenthesized prefix
notation, mainly used in the Lisp family languages. They were
selected as the framework’s source language notation because
they offer important advantages:

• Both code and data can be easily represented. Adding a new
language construct is pretty straightforward.

• The number of program elements is minimal, thus a parser is
relatively easy to write.

• The arity of operators doesn’t need to be fixed, so, for
example, the + operator can be defined to accept any number
of arguments.

• There are no problems regarding operator precedence or
associativity, because every operator has its own pair of
parentheses.

It’s definitely easier to build an S-expression interpreter using an
S-expression language like Common Lisp or Scheme. Indeed,
plenty examples have been documented previously [1][2][5]. In
most of these cases, a “meta-circular” approach is used, meaning
that the existing facilities of the implementation language are
directly applied to the source code being interpreted. Although
this approach is very interesting as a way of demonstrating the
power and expressiveness of the implementation language, the
author has witnessed that some students get the impression that
we are actually “cheating”. This is because a lot of the source
language features are typically mapped directly to the same
features in the implementation language. The SIF, having Ruby as
its implementation language, skips this common circular
perception peril. Ruby offers the power and flexibility of a
dynamic language, yet maintains a healthy distance from the
source language being interpreted.

1.2 The Interpreter Pattern
The interpreter pattern is one of the classical Gang of Four (GoF)
behavioral patterns [4]. A program is portrayed as a tree in which
every construct or element in the source program is represented by
a specific kind of node. Every node responds to a special
operation called interpret, which is responsible for performing the
expected behavior associated with the corresponding language
element. The interpret operation receives a context as a parameter,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’08, March 12-15, 2008, Portland, Oregon, USA.
Copyright 2008 ACM 978-1-59593-947-0/08/0003...$5.00.

which is basically a symbol table where variable bindings can be
established and queried during runtime.
The framework’s job begins by reading a source program
represented as a string. The Ruby regular expression API is used
to scan the input, and a hand written recursive descent parser
performs the syntactic analysis that transforms the S-expressions
into the equivalent Ruby data values. These objects are then
traversed in order to construct the tree required by the interpreter
pattern.

1.3 The Ruby Language
Ruby is an interpreted, dynamically typed programming language.
Its syntax borrows from Eiffel, Ada, and Perl, and it’s fully
object-oriented in the spirit of Smalltalk [7]. Several language
features in Ruby simplify the construction of language
interpreters, including:

• Built-in regular expressions, required to build a lexical
analyzer or scanner.

• Garbage collection, which allows the interpreted languages
to also benefit from automatic memory management.

• Built-in hashes can be used as symbol tables, while primitive
symbol data values can be used as efficient hash keys.

• Open classes, which simplify using predefined Ruby classes
to represent the interpreter’s basic data types, since new
methods can always be added to these classes if needed.

• First class continuations, which permit the implementation of
special control-flow instructions such as arbitrary loop
breaks and exception handlers.

The following subsubsections briefly describe a few Ruby
language issues necessary to understand the code found in other
sections of this paper.

1.3.1 Data Types
Everything in Ruby is an object, including: strings, numbers,
arrays (lists), hashes (maps or dictionaries), symbols, procedures
(closures), and even classes. Some examples (the # character
denotes the start of a line comment):

'Hello Portland!' # A string
42 # A number
[1, [], 'A'] # An array
{ 'foo' => 5, 'bar' => 10 } # A hash
:foo # A symbol
Proc.new {|x, y| 2*(x+y)} # A procedure
class MyClass; end # A class

1.3.2 Naming Conventions
Local variables, method parameters, and method names should all
start with a lowercase letter or with an underscore. Global
variables are prefixed with a dollar sign ($), while instance
variables begin with an “at” sign (@). Class variables start with
two “at'” signs (@@). Finally, class names, module names, and
constants should start with an uppercase letter [8].

1.3.3 Code Blocks
A code block is a “chunk” of code that can be associated with a
method invocation, almost as if it was a parameter. That method
can then invoke the block one or more times using Ruby’s yield
statement. The return value of a block is the result of its last
expression. Code blocks are a very important and powerful feature
of the Ruby language, and they are usually used to implement

things like callbacks and iterators. The SIF implementation uses
code blocks extensively.
Code blocks are enclosed within curly braces (or by the do and
end reserved words), and they may include a comma-separated
formal parameter list delimited by vertical bars (see the procedure
object example in section 1.3.1). Although the code block would
seem like an extra parameter, it’s better to think of it as a
coroutine that transfers control back and forth between itself and
the method [8].

2. USING THE FRAMEWORK
The following subsections explain the basic usage of the SIF and
demonstrate how to extend it.

2.1 Evaluation Rules
The core of the SIF is very simple. It only supports integers,
symbols, lists, and procedures. These are evaluated as follows:

• A number evaluates to itself.
• A symbol is considered to be a variable reference, so it

evaluates to the value that it’s bound to. If the variable is
unbound, a runtime error is raised.

• An empty list evaluates to itself.
• A non-empty list is considered a procedure application. The

first element of the list must evaluate to a “callable” object.
An object is callable if it contains a method named call
(this is true also for standard Ruby Proc objects). A runtime
error is raised if no callable object is found at the beginning
of the list. The remainder of the list elements are evaluated
and sent as arguments to the procedure being called. A
runtime error is also raised if the number of actual and
formal parameters doesn’t match.

Non-empty lists may also be special forms with particular
evaluation rules, but they must be explicitly defined. Section 2.4
explains how to do this. Additionally, there are no explicit
boolean values. The SIF’s convention is that an empty list is
considered to be false, anything else is considered true.

2.2 Simple Usage
The Interpreter.eval class method is the heart of the SIF.
This method receives a string and a context as inputs. The string
should contain one or more valid S-expressions, while the context
may be a hash object in which each key represents the name of a
variable that’s associated with some specific value. The hash keys
are assumed to be Ruby Symbols, and the hash itself should be
mutable in order to allow the S-expressions to modify its contents
if needed. This method parses the input string converting the S-
expressions into their equivalent Ruby data values, and then
proceeds with the evaluation using the interpreter pattern as
described in section 1.2.
The following example shows how to use the SIF in its simplest
form:

require 'sif'

my_context = {:foo => 5, :bar => 10}
result = Interpreter.eval('foo', my_context)
puts result.to_sexp

The first instruction loads the required framework code. The last
instruction prints the result of the evaluation using the to_sexp
method to obtain its S-expression textual representation. This
example prints 5, because the expression to evaluate is only a

reference to variable foo, which is associated to the value 5 in the
given context. Writing a simple REPL (Read-Eval-Print Loop) for
the SIF is a pretty straightforward chore.

2.3 Defining Primitive Procedures
A procedure is considered to be “primitive” if it’s written in
Ruby. Continuing from the last example, the following code
creates a primitive procedure and binds it to a variable in our
previously defined context:

my_context[:max] = Proc.new do |args, ctx|
(args[0] > args[1]) ? args[0] : args[1]

end

Primitive procedures for the SIF are usually defined as Ruby
Proc objects. They receive two inputs: an array args, which
contains the actual parameters sent to the procedure, and the
current context ctx, which may be safely ignored most of the time
(the current context in normally useful only when defining
procedures like Lisp’s eval or apply). The above code binds
into my_context the variable max with a procedure that returns
the larger of its two arguments (assuming they’re comparable
through the > operator). The ? ternary operator used here works
the same as in other C-family languages. The newly defined
procedure can now be used as follows:

a_string = '(max (max foo bar) 7)'
result = Interpreter.eval(a_string, my_context)
puts result.to_sexp

This code prints 10.
The SIF provides a class called Primitives which provides a set
of predefined primitive procedures (including operations for
arithmetic, list processing, and type predicates) that can be readily
used. The class method Primitives.context should be used to
get a copy of the context containing the variable bindings to the
primitive procedures. New variables bindings can be added
afterwards, for example:

my_context = Primitives.context
my_context[:baz] = 20

New primitive procedures can be added to the Primitives class
using the Primitives.include class method. The following
code shows a possible implementation of an equality primitive
procedure, including its input validation, and the way to integrate
it into the Primitives class:

Primitives.include('equal?') do |args, ctx|
if args.length != 2
raise InterpreterError.new(
'equal? expects two arguments!')

else
args[0] == args[1] ? :t : []

end
end

The parameter received by the include method may be a string
or a symbol. The associated code block gets converted to a Proc
object and gets stored in a private hash contained within the
Primitives class. Ruby’s true and false values are not
supported by the language being interpreted, so equivalent values
should be explicitly returned (the symbol :t and the empty list
[], respectively).

2.4 Defining Special Forms
The SIF uses strict evaluation when calling a procedure. This
means that all the arguments of a procedure are completely
evaluated before being called. Sometimes a different behavior

from the one described is required. If that’s the case, a new special
form can be defined.
Defining a special form requires creating a new class with the
following characteristics:

•••• It must be a subclass of the Node class. Instances of this
class will be used as nodes for the interpreter pattern tree.

•••• It must include a special_form statement to indicate the
name that this special form will have when used as an S-
expression. The name must be specified as a string, and it
must be a valid S-expression symbol name.

•••• It must define an initialize method (similar to a
constructor in other languages) receiving one array
parameter that contains all the arguments (as Ruby data
values) to this special form. This method has two purposes:

1. Validate the correct syntax for this special form.
2. Construct the subtrees for this special form by calling

the Node.build class method. The resulting child
nodes should be stored in instance variables. This step
converts Ruby core data into the corresponding
interpreter pattern tree.

•••• It must define the interpret method, which receives a
context as a parameter. This is the central method in the
interpreter pattern. Usually, the interpret method is
called recursively for some or all of its child nodes,
according to the semantics of this special form, which also
establishes what the return value should be.

The previous description can be summarized as follows:
For any special form being defined, identify its syntax and
semantics. The syntax must be checked in the initialize
method, while the semantics must be implemented in the
interpret method.

For example, suppose we want to implement the if special form.
Its syntax and semantics are as follows:

Syntax: (if 〈condition〉 〈consequent〉 〈alternative〉)

Semantics: Evaluate 〈condition〉, if the resulting value is not
an empty list, evaluate and return 〈consequent〉,
otherwise evaluate and return 〈alternative〉.

The following code takes into account all the stated requirements.
This is the complete implementation of the IfNode:

class IfNode < Node
special_form 'if'
def initialize(args)
if args.length == 3
@condition = Node.build(args[0])
@consequent = Node.build(args[1])
@alternative = Node.build(args[2])

else
raise InterpreterError.new(
'if takes three arguments!')

end
end
def interpret(context)
if @condition.interpret(context) != []
return @consequent.interpret(context)

else
return @alternative.interpret(context)

end
end

end

No other part of the SIF has to be modified in order to extend it
with this special form. The trick is done through the
special_form statement, which adds a reference to this class
into an internal table that is later used by the Node.build class
method to create IfNode instances whenever the if symbol is
found after an opening parenthesis.
The SIF is now able to evaluate an S-expression like this one:

(if (< (* 3 3) (+ 3 3)) (* 3 3) (+ 3 3)) ⇒⇒⇒⇒ 6

In the previous IfNode class definition, the if special form was
implemented using Ruby’s if statement. Most of the time, this
mapping from S-expressions to Ruby is not as straightforward as
observed here, and that’s when things start to get interesting.

3. ADVANCED LANGUAGE ISSUES
The SIF can be extended in several interesting ways. The next
subsections document some possibilities that the author has
explored together with his students.

3.1 Functional Programming
A small pure functional language interpreter can be built with the
SIF core infrastructure plus the following special forms: quote,
define, if and fn. These special forms behave mostly like their
Scheme programming language counterparts [2]. Some examples:

(define composite
(fn (f g)
(fn (x) (f (g x)))))

(define f1 (fn (x) (+ x 3)))
(define f2 (fn (x) (* x 2)))
(define f3 (composite f1 f2))
(define f4 (composite f2 f1))
(f3 1) ⇒⇒⇒⇒ 5
(f4 1) ⇒⇒⇒⇒ 8
(define map
(fn (proc lst)
(if (null? lst) ()

(cons (proc (first lst))
(map proc (rest lst))))))

(map f2 (quote (4 -3 10 5))) ⇒⇒⇒⇒ (8 -6 20 10)

The fn special form is used for creating procedures. Here’s its
implementation:

class FnNode < Node
special_form 'fn'
def initialize(args)
Validation code omitted
@params = args[0]
@body = Node.build(args[1])

end
def interpret(context)
return StaticScopeProcedure.new(
context, @params, @body)

end
end

class StaticScopeProcedure
def initialize(context, params, body)
@context = context
@params = params
@body = body

end
def call(args, ctx)
return @body.interpret(
extend_context(@params, args, @context))

end
end

The StaticScopeProcedure object returned by the interpret
method of FnNode class allows having lexical closures. Instances
of this class are callable (contain a call method), meaning that
they can be used as the first element of a procedure application
list. The extend_context method invoked inside the call
method is responsible for creating a shallow copy of the stored
context (@context) and adding to this copy the corresponding
bindings between the formal (@params) and actual (args)
parameters. This extended context is then used to evaluate the
procedure’s body (@body). Note that the context being cloned is
the one available when the procedure was created and not when it
was actually called. This subtle detail is the difference between
static and dynamic scoping.
It’s worth pointing out a couple of important issues with this
implementation. Firstly, self and mutual recursions are supported
thanks to the ways in which the contexts are used and cloned.
Secondly, when a procedure gets called, Ruby’s ordinary
invocation mechanism is used. This means that there is no support
for tail-recursion optimization, as it might be expected from a
functional language. This could be considered a major
shortcoming of the current SIF implementation.

3.2 Imperative Programming
The SIF allows imperative programming by adding two special
forms: set! (assign a new value to a previously defined variable,
and return nil) and begin (evaluate a sequence of expressions
from left to right, and return the result of the last expression). A
new class, called Environment, also needs to be defined. This
class is used to represent contexts for imperative programs. Its
interface is similar to a hash, but internally it uses a list of frames.
Individual frames, which also happen to be hashes, represent a
scoping level. Frames are shared within the environments of
nested procedures, allowing every variable definition and
assignment to occur inside the expected frame.
Special environment objects were not required in assignmentless
programs because whenever a procedure was called, the hash used
as the context was merely copied. Any new parameter whose
name already existed in the hash copy was simply overwritten
with a new value. Because the values in a context were never
required to be updated (because there is no assignment), there
could be multiple copies of the same variables in different hashes
without this being a problem.

3.3 Using Continuations
Unlike many other languages, Ruby supports first class
continuations. These can be used together with the SIF to
implement special flow control structures such as exceptions or
loop breaks. The following code illustrates how to use
continuations to implement a break inside a while. This code
uses the callcc method to capture the current continuation.
Assuming that the code is running in a single execution thread, we
can use a global stack in order to allow multiple nested while
statements. The continuation is sent as a parameter to the
associated block and is pushed into the stack referred by a class
variable. When the break procedure is called, the continuation at
the top of the stack is called. This causes the program execution
flow to safely jump to the end of the corresponding callcc
instruction, effectively ending the most nested while loop. When
the while terminates (normally or through a break instruction)
the continuation at the top of the stack is popped.

class WhileNode < Node
special_form 'while'
@@stack = []
def initialize(args)
syntax validation code omitted
@condition = Node.build(args[0])
@body = Node.build(args[1])

end
def interpret(context)
callcc do |continuation|
@@stack.push(continuation)
while @condition.interpret(context) != []
@body.interpret(context)

end
end
@@stack.pop
return nil

end
def WhileNode.do_break
@@stack.last.call if !@@stack.empty

end
end

Primitives.include('break') do |args, ctx|
WhileNode.do_break

end

This is how the while and break statements could be used:
(define i 1)
(define r 1)
(while (< i 11) (begin (set! r (* r i))

(if (= i 5) (break) ())
(set! i (+ i 1))))

r ⇒⇒⇒⇒ 120
i ⇒⇒⇒⇒ 5

4. CLASS EXPERIENCE
The author has used the S-expression Interpreter Framework in
his Programming Language course several times since mid 2005.
This course is mandatory for third year computer science
undergraduate majors. Before taking the course, all students have
had a fair amount of experience designing and programming in
Java and C/C++. They’ve already taken courses on data structures
and theory of computation, so they’re familiar with stacks,
queues, hash tables, regular expressions and context free
grammars.
The course is taught during a sixteen week semester. It’s mainly
focused on teaching programming paradigms and language design
issues. The SIF is presented to students during the last four weeks.
At this point, they’ve been exposed already to Scheme and Ruby,
so it’s possible to thoroughly deal with the framework’s inner
workings. As extra-class activities, students are required to extend
the SIF in order to implement some of the following features:

• Operations that deal directly with the primitive data types,
for example arithmetic and type conversion operations.

• New syntactic elements based on others previously defined
(syntactic sugar). This basically means using special forms as
a procedural macro facility.

• Lazy (delayed) evaluation support, like short-circuit logical
operations (C’s && and ||) or infinite streams (Scheme’s
delay and force).

• Local variables with dynamic scope, as available in Common
Lisp or Perl.

• Flow control statements, including conventional loops (C or
Pascal), pattern matching (Haskell or Erlang), exception

handlers (C++ or Java), coroutines (Modula-2), and iterators
(Python).

• A simple object-oriented system, combining lexical closures
and some syntactic sugar, as can be accomplished in Scheme
[2].

The neat thing about the SIF is that all the exercises in the
previous list can be solely accomplished by applying the
techniques demonstrated in sections 2.3 and 2.4.
Once the course has concluded, most students demonstrate
through formal assessment that they are able to:

• Extend the SIF by writing their own primitive procedures
and special forms using Ruby and object-oriented design
principles and techniques.

• Read and write S-expression source programs that use a
certain programming style or apply a specific language
concept.

Informal interviews with students at the end of the semester
suggest that, in general, they enjoyed the SIF approach and that it
helped them to have a better understanding of how programming
languages work.

5. CONCLUSIONS
The S-expression Interpreter Framework (SIF) provides the basic
building blocks that allow writing interpreters that can easily be
studied, extended and modified. Particularly useful is the SIF’s
special form definition mechanism, which allows a clear
distinction between the syntax and semantics of any language
construct. The author has used the SIF in his Programming
Languages course for several semesters now with positive results.
The full source code for the SIF is freely available for anyone to
use and modify under the GNU General Public License at the
following Web site: http://sif.arielortiz.com/

6. REFERENCES
[1] Abelson, Harold, and Gerald Sussman. Structure and

Interpretation of Computer Program, Second Edition. The
MIT Press, Cambridge, MA, 1996.

[2] Dybvig, Kent. The Scheme Programming Language, Third
Edition. The MIT Press, Cambridge, MA, 2003.

[3] Friedman, Daniel, Mitchell Wand, and Christopher Haynes.
Essentials of Programming Languages, Second Edition. The
MIT Press, Cambridge, MA, 2001.

[4] Gamma, Erich, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable Object
Oriented Software. Addison-Wesley, Reading, MA, 1995.

[5] Hennessy, Wade. Common Lisp. McGraw-Hill College, New
York, NY, 1989.

[6] Kamin, Samuel. Programming Languages: An Interpreter
Based Approach. Addison-Wesley, Reading, MA, 1990.

[7] Matsumoto, Yukihiro. What’s Ruby.
http://www2.ruby-lang.org/en/20020101.html
Accessed November 10, 2007.

[8] Thomas, Dave, Chad Fowler, and Andy Hunt. Programming
Ruby: The Pragmatic Programmers’ Guide, Second Edition.
Pragmatic Bookshelf, Raleigh, NC, 2004.

