
Using WebAssembly to Teach Code Generation in a Compiler
Design Course

Ariel Ortiz
Department of Computing, School of Engineering and Sciences

Tecnologico de Monterrey, Campus Estado de México
Atizapán de Zaragoza, Estado de México, Mexico

ariel.ortiz@tec.mx

ABSTRACT
For many students, code generation is the most demanding topic
covered in a typical undergraduate Compiler Design course. In this
poster, the author will present how he has successfully used the
fairly novel and promising WebAssembly technology in his course
in order to make the said topic more relevant and engaging for
learners. Once we have a compiler frontend that produces an ab-
stract syntax tree (AST) and a symbol table for a given source
program, the code generation phase involves traversing the AST
and emitting the corresponding WebAssembly instructions in a
generally straightforward fashion. The code generation phase is
significantly simplified given that WebAssembly is actually an inter-
mediate code for a stack-based virtual machine. The real machine
code is produced later by the WebAssembly runtime’s just-in-time
(JIT) compiler. During execution, the generated code may call func-
tions written in a high-level language directly supported by the
runtime. This allows having basic I/O capabilities, like printing to
the screen or reading input from the keyboard. At the end of the
semester, students have authored the frontend and backend of a
fully working compiler that translates a simple C-like procedural
language into platform-neutral executable WebAssembly code.

CCS CONCEPTS
• Software and its engineering → Source code generation.

KEYWORDS
Compiler Design, Code Generation, WebAssembly

1 INTRODUCTION
WebAssembly [7] (Wasm for short) is a binary code format specifi-
cation released in 2017. This technology can be implemented in web
browsers or standalone applications in a secure, open, portable, and
efficient fashion [3]. Wasm was primarily designed as a compilation
target, so using it for code generation in a Compiler Design course
is quite suitable and makes compiler projects more manageable for
students.

Code generation is a topic that has been extensively covered
in compiler construction books in the past [1, 2], although most

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCSE 2022, March 3–5, 2022, Providence, RI, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9071-2/22/03.
https://doi.org/10.1145/3478432.3499119

of these texts don’t emphasize on how to produce code for a new
generation of stack-based virtual machine instruction sets such as
those for the Java Virtual Machine (JVM) [6], the Common Language
Infrastructure (CLI) [5], the Yet Another RubyVM (YARV) [8] or
WebAssembly.

2 GENERAL OVERVIEW
In the first part of the course, students write the compiler frontend
which creates the AST and a symbol table starting from an input
source program. They do this by handcrafting in the C# program-
ming language a recursive descent parser [1]. Afterwards, they apply
the visitor design pattern [4] to write the compiler backend in order
to traverse the AST and emit the corresponding Wasm text format
[7] instructions.

The generated textual code is translated into Wasm binary code
and executed using the Wasmer Python package [9], a Wasm stan-
dalone runtime. Wasmer also allows us to write a simple runtime
library using Python in order to provide basic I/O and memory
management facilities. Although Wasm only has direct support for
integers and floats, provision for strings and arrays can be achieved
by using a resource handle mechanism that is capable of interacting
with the runtime system.

Anecdotal evidence shows that this approach to code generation
has beenwell received by students. At the end, their projects are able
to compile to Wasm a variety of interesting programs, including:
converting to binary numbers, computing factorials, checking for
palindromes, and sorting arrays. More information available at:
arielortiz.info/sigcse2022

REFERENCES
[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compilers:

Principles, Techniques, and Tools (2nd. ed.). Addison-Wesley, Boston, MA.
[2] Keith D. Cooper and Linda Torczon. 2011. Engineering a Compiler, Second Edition.

(2nd. ed.). Morgan Kaufmann, San Francisco, CA.
[3] Colin Eberhardt. 2019. What Is WebAssembly? O’Reilly Media, Sebastopol, CA.
[4] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. 1995. Design

Patterns: Elements of Reusable Object Oriented Software. Addison-Wesley, Boston,
MA.

[5] ECMA International. 2012. ECMA-335 Common Language Infrastructure. Re-
trieved December 9, 2021 from https://www.ecma-international.org/publications-
and-standards/standards/ecma-335/

[6] Tim Lindholm, Frank Yellin, Gilad Bracha, Alex Buckley, and Daniel Smith. 2021.
The Java Virtual Machine Specification, Java SE 17 Edition. Retrieved December
9, 2021 from https://docs.oracle.com/javase/specs/jvms/se17/html/

[7] Mozilla and individual contributors. 2021. WebAssembly. Retrieved December 9,
2021 from https://developer.mozilla.org/en-US/docs/WebAssembly

[8] Koichi Sasada. 2005. YARV: Yet Another RubyVM: Innovating the Ruby Interpreter.
In Companion to the 20th annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA ’05). ACM Press,
New York, NY, 158–159. https://doi.org/10.1145/1094855.1094912

[9] Wasmer, Inc. 2021. Wasmer-Python GitHub Repository. Retrieved December 9,
2021 from https://github.com/wasmerio/wasmer-python

Posters Session #4 — Virtual SIGCSE 2022, March 3–5, 2022, Providence, RI, USA

1167

https://doi.org/10.1145/3478432.3499119
https://www.ecma-international.org/publications-and-standards/standards/ecma-335/
https://www.ecma-international.org/publications-and-standards/standards/ecma-335/
https://docs.oracle.com/javase/specs/jvms/se17/html/
https://developer.mozilla.org/en-US/docs/WebAssembly
https://doi.org/10.1145/1094855.1094912
https://github.com/wasmerio/wasmer-python

	Abstract
	1 Introduction
	2 General Overview
	References



